
You for Youth | Computer Science for All — Computer Not Required

Computational Thinking: Why It Matters

This resource is in the public domain. Authorization to reproduce it in whole or part is granted. This resource was
funded by the U.S. Department of Education in 2016 under contract number ED-ESE-14-D-0008. The views
expressed here are not necessarily those of the Department or the contractor. Learn more about professional
development planning and 21st CCLC learning at https://y4y.ed.gov.

1

Think you need to have a computer or advanced computer skills to help students learn the
problem-solving processes that computer science experts use? Think again. “Computational
thinking” doesn’t require any specialized equipment or abilities, but it does cultivate key skills that
are useful for school, work and everyday life. Students who learn computational thinking can
apply these processes:

 State a problem in a way that enables you to use a computer and other tools to solve it.
 Logically organize and analyze data.
 Use models or simulations to represent data.
 Develop an automated solution for a problem by breaking it into a sequence of smaller

steps.
 Identify and try various solutions to determine what works best and why.
 Use the fine-tuned processes described above to solve a variety of problems.

Computational thinking skills lay a foundation for many career paths, including ones that don’t
involve computers, so it is especially important to build these skills among students from groups
that tend to be underrepresented in science, technology, engineering and mathematics (STEM)
fields. These groups include girls and young women, socioeconomically disadvantaged students,
English learners and students with disabilities.

This guide was designed to help you get started sharing activities that cultivate computational
thinking. It identifies some potential challenges a 21st CCLC practitioner might encounter when
teaching computational thinking, and offers suggestions for how to address them.

Problem Example Solution

The student has
trouble
understanding what
the problem is, so he
or she can’t clearly
state the problem.

The student is asked to
describe a process for
fixing a broken bike.
However, the student
has never owned or
ridden a bike, and has no
context for the problem.

Sort Information (Abstraction)

Discuss the fact that you need to consider only the
parts of a problem that are important to solving it.
Ignore information that is irrelevant to the
solution. To fix a bike, you don’t need to know
how to ride a bike; you do need to know what
might cause a bike to break. Explain some of the
common ways bikes can break — the brake cables
can become loose, the chain can come off the
gears, and so on.

The student has
difficulty making an
accurate mental
model of a
complicated system,
and such a model
might be needed to
solve the problem.

The student understands
the various ways a bike
might break, but has
trouble picturing how
the pedals, gears,
wheels, handlebars and
brakes work together to
make the bike operate
properly.

See the Process (Decomposition)

Help the student “decompose” the problem by
breaking it down to its basic parts. Highlight how
the pedals on a bike work to turn the gears, and
the gears turn the wheels, which can be steered
with the handlebars and slowed or stopped with
the brakes. Decomposition can give the student a
picture of how each part of a system works by
itself, and how all the parts work together.

You for Youth | Computer Science for All — Computer Not Required

Computational Thinking: Why It Matters

This resource is in the public domain. Authorization to reproduce it in whole or part is granted. This resource was
funded by the U.S. Department of Education in 2016 under contract number ED-ESE-14-D-0008. The views
expressed here are not necessarily those of the Department or the contractor. Learn more about professional
development planning and 21st CCLC learning at https://y4y.ed.gov.

2

Problem Example Solution

The student
struggles to put
together a complete
process for solving
the problem.

The student has a good
picture of how all the
parts of a bike work, but
still isn’t sure how to use
that knowledge to put
together the steps
needed to fix a broken
bike.

Map the Steps (Algorithms)

Show the student how to structure the steps of a
solution in a logical and efficient process, called an
algorithm. If you need the same tools to fix the
brakes that you need to fix the gears, for example,
you could be efficient by putting these steps next
to each other.

The student becomes
frustrated when a
proposed solution
doesn’t work.

The student has come up
with a process for fixing
the bike that considers
all parts of the problem
individually and as a
part of the system, but
the solution still isn’t
working quite right.

Phone a Friend (Collaboration)

Have students help one another using the
Collaborative Discussion Framework to ask these
questions:

1. What are you trying to do? (Ensure that
they understand the goal of the exercise.)

2. What have you tried already? (Have
them repeat each step they have taken so
far.)

3. What else do you think you can try?
(Brainstorm for alternative solutions.)

4. What would happen if…? (Develop
hypotheses about alternative solutions and
test them to see if they work.)

The student has
trouble applying the
lessons learned from
one problem to a
different but similar
problem.

Having successfully
designed a process for
fixing a bike, the student
is now having trouble
designing a process for
fixing a scooter.

Look for Patterns

Highlight the importance of recognizing patterns.
A bike and a scooter aren’t quite the same, but
they are similar. The wheels on a scooter might
break the same way the wheels on a bike might
break, and they might be repaired in the same
way. By recognizing this pattern and reusing a
solution you’ve already developed, you work
efficiently and make your life easier.

You for Youth | Computer Science for All — Computer Not Required

Computational Thinking: Why It Matters

This resource is in the public domain. Authorization to reproduce it in whole or part is granted. This resource was
funded by the U.S. Department of Education in 2016 under contract number ED-ESE-14-D-0008. The views
expressed here are not necessarily those of the Department or the contractor. Learn more about professional
development planning and 21st CCLC learning at https://y4y.ed.gov.

3

Bibliography

International Society for Technology in Education and the Computer Science Teachers Association,
Operational Definition of Computational Thinking for K-12 Education [Based on work
supported by the National Science Foundation].
https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

Maya Israel, Quentin M. Wherfel, Jamie Pearson, Saadeddine Shehab, and Tanya Tapia.
“Empowering K-12 Students With Disabilities to Learn Computational Thinking and
Computer Programming,” Teaching Exceptional Children 48, no. 1 (2015): 45-53.
doi:10.1177/0040059915594790

Satabdi Basu, Gautam Biswas, Pratim Sengupta, Amanda Dickes, John S. Kinnebrew, and Douglas
Clark. “Identifying Middle School Students’ Challenges in Computational Thinking-Based
Science Learning,” Research and Practice in Technology Enhanced Learning 11, no. 13
(2016). doi:10.1186/s41039-016-0036-2

Sepehr Vakil. “A Critical Pedagogy Approach for Engaging Urban Youth in Mobile App
Development in an After-School Program,” Equity & Excellence in Education 47, no. 1
(2014): 31-45. doi:10.1080/10665684.2014.866869

https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

